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Abstract. We analyse different types of resonance phenomena that can occur in a coupled map lattice in
the presence of noise with a subthreshold signal. The onsite dynamics considered here is different from
previous such studies, namely, a bimodal cubic map capable of bistability in its dynamics. In addition
to the resonance observed in the temporal iterates (the conventional stochastic resonance), we establish
the possibility of resonance patterns in spatial sequences along the lattice, which we refer to as “Lattice
Stochastic Resonance”. The characterising features of both are investigated in detail, under different types
of signals with nearest neighbour coupling between lattice points. Possible practical applications are in
signal detection, image processing and in communication networks.

PACS. 05.45.Ra Coupled map lattices – 05.40.Ca Noise

1 Introduction

Coupled Map Lattices (CML) are discrete dynamical sys-
tems with a spatio-temporal evolution involving large
number of degrees of freedom. As such, they are especially
useful to model the evolution of collective behaviour in
connected systems [1]. They live on a lattice of size N with
a prescribed spatial interaction or coupling scheme and a
discrete dynamics or map defined at each site. The state of
the whole lattice at time t is given by the N -dimensional
vector

x(t) = (x(t, 1), x(t, 2) · · · x(t, N))T (1)

The time evolution of this state follows the iterative
scheme,

x(t + 1, i) = (I + ε
2L)f(x(t, i)) (2)

where f(x(t, i)) is the vector governing the local dynam-
ics, I is the identity operator and L is the coupling op-
erator with ε as the parameter representing the coupling
strength. The most well studied lattice has the diffusive
coupling scheme, where Li,i±1 = 1, Lii = −2 and Lij = 0
otherwise.

Depending on the onsite dynamics, the values of its
control parameters and ε, the spatio temporal system may
evolve into complete synchronisation (CS) [2] i.e., x(t, i) =
x(t) ∀i. Under conditions when CS destabilises, it is capa-
ble of other spatial patterns like clusters [3], lattice fractal
sets [4], spatio temporal intermittency [5], spatial bifurca-
tions [6] etc. The richness of its dynamics can be enhanced
by driving the system with an external signal, which of-
ten leads to stable synchronised states, collective periodic
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behaviour or turbulence [7]. The stability and associated
scaling laws in such structures have been recently analysed
in detail for different types of onsite dynamics like the lo-
gistic map, circle map, Chate-Manneville map etc. [8]. The
effect of external noise can also lead to diverse phenom-
ena in this system as discussed by many authors [9]. In
general, noise-induced phenomena are found to give bet-
ter performances in coupled systems or connected arrays
than single systems [10] and can be controlled to reach op-
timum conditions by adjusting the strength of coupling.
While small values of spatial coupling lead to spatially
blocked configurations or clusters with pinned interfaces,
a proper amount of noise helps the system to cross these
barriers.

Here we analyse the dynamics of the states formed
through a CML by supplying a signal and noise simul-
taneously to all the lattice points with a local map ca-
pable of bistability in its own dynamics. The aim is to
keep the signal subthreshold and search for possible res-
onance related phenomena induced by noise. An impor-
tant phenomenon which can be realised in this respect is
the stochastic resonance (SR) [11], with a wide range of
practical applications [12,13]. Note that SR in an array
of bistable oscillators has been studied previously lead-
ing to array enhanced stochastic resonance (AESR) [14]
and noise enhanced propagation (NEP) [15]. These re-
sults have been extended to CML with various types of
onsite dynamics [16]. However, all these studies mainly
concentrated on the response of the middle site and its
improvement due to spatio temporal synchronisation and
spatial connectivity. But our analysis here is different from
the previous studies in many ways. Firstly, we employ a
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two parameter, bimodal cubic map for the local dynam-
ics, which has bistability in periodic as well as chaotic
attractors [17]. More importantly, since the dynamics of
a CML is spatial as well as temporal, we feel that both
these aspects should be put into utility for an optimum
use of these systems. This is achieved by using spatially
recurring static signals and travelling wave trains along
the lattice, apart from the usual temporally varying sig-
nals at the lattice sites.

The motivation for these studies comes from the fol-
lowing. The CML, being a coupled system, is inherently
flexible to handle practical situations through the two ad-
ditional parameters, viz, the system size and strength of
coupling. Thus, it is more akin to what natural biologi-
cal systems do in a self organised way. They use SR to
detect weak signals, by adjusting the number of member
systems and the strength and nature of coupling among
them and try to obtain optimum conditions. This is es-
pecially needed for their functioning since the weakness
of the signal and quantity and nature of environmental
noise vary according to external circumstances beyond
their control. There are also other important areas where
the above conditions can be applied, such as, for example,
signal processing with coupled nonlinear networks (CNN).
Moreover, the CML with the bistable cubic map can arise
naturally in the study of phase transitions in an actual
one dimensional crystal lattice (see Sect. 2) and can also
capture the essential features of the evolution process in
the study of the nonequilibrium patterns.

We show that SR can occur with all the different types
of signals mentioned above. An important novel feature of
our work is the introduction of the concept of “Lattice
Stochastic Resonance” (LSR), for the detection of spa-
tially varying signals along a CML with the help of back-
ground noise. We also discuss some characterising features
of LSR, such as, its dependence on, optimum noise ampli-
tude, coupling strength and lattice size.

Our paper is organised as follows. In Section 2, we
introduce the type of CML we implement, with the char-
acteristic features of the onsite dynamics chosen. The dif-
ferent types of signals used for the analysis are also in-
troduced. In Section 3, we present the various aspects of
SR in the presence of a temporal signal at each lattice site
and compare them with the results obtained for AESR. In
Section 4, the LSR is introduced and its characteristic fea-
tures are discussed. The conclusions along with possible
future works are given in Section 5.

2 CML as a bistable stochastic resonator

To setup the CML as a stochastic resonator working un-
der bistable mechanism, we choose the onsite map func-
tion f(x) as a 2-parameter bimodal cubic map which is a
discrete version of the usual double-well potential:

f(x(t, i)) = b + ax(t, i) − x(t, i)3. (3)

However, discretisation changes the escape scenario while
retaining bistability that can be tuned with greater flexi-

bility using the two parameters a and b involved. Its dy-
namical possibilities under such variations have been es-
tablished earlier [17]. For a = 1.4, the map has a bistability
in one cycle in ‘b’ window = [−0.1, 0.1] and as a is in-
creased to 2.4, bistability shifts to the chaotic regions
through the usual period-doubling scenario. The bistable
attractors are clearly separated with x > 0 being the basin
of one and x < 0 that of the other. We have investigated
the occurance of SR in a single map of (3) and a system
of 2 coupled maps with linear difference coupling [18]. For
the present study, we use the same map with a = 2.4 and
b = 0.01 in the regime of bistable chaotic attractors and
construct a CML with diffusive, nearest neighbour cou-
pling as

x(t+1, i) = (1−ε)f(x(t, i))+
ε

2
[f(x(t, i−1))+f(x(t, i+1))]

(4)
where t and i refer to the discrete index for time and space
and ε is the coupling strength for connectivity or diffusive
interaction among the maps.

Note that the above model appears in several physical
contexts as well. For example, consider a one dimensional
crystal lattice with nearest neighbour interaction in the
presence of a quartic potential. The standard equation to
study phase transitions in such a system is the time depen-
dent Ginzburg-Landau equation for an order parameter
field x(r, t) given by

∂x(r, t)
∂t

= Ax(r, t) − Bx(r, t)3 + C + D∇2x(r, t) (5)

where A, B, C are parameters and D is the diffusion coeffi-
cient. Discretising the above equation with nearest neigh-
bour coupling results in (4) [19].

In order to study SR in the system, we add a periodic
signal S(t) and a Gaussian random noise η(t) of zero mean
and a range of variance values from 0.2 to 1 to each lattice
site to get

x((t + 1), i) = (1 − ε)f(x(t, i)) +
ε

2
[f(x(t, i − 1))

+ f(x(t, i + 1))] + ZS(t) + Eη(t). (6)

Here Z and E measure the amplitude of the signal and
noise respectively. To exploit the full capacity of the lat-
tice as a resonator, we use four different types of input sig-
nals for S(t) as temporal Stp = sin(2πpt), spatial (static)
Ssp = sin(2πpi), spatio-temporal Sst = sin(2πpit) and
travelling wave Stw = sin(2πp(i − t)). The frequency of
the signal in all the cases is fixed at a convenient value,
p = 1/8.1 A comparison between the signals is shown in
Figure 1, where the variation of each of them along the
lattice is plotted at two given time steps t = 1 and t = 5,
for a lattice of size N = 15. In the figure, each column
represents one type of signal, namely, (a)Stp (b)Ssp (c)Sst

and (d)Stw . To analyse the spatio temporal behavior of

1 The computations have been done for a range of frequen-
cies from 0.1 to 0.3 and we have obtained LSR for all the
frequencies.
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Fig. 1. A comparison between different types of signals used
as input to the lattice. Each column represents one type of
signal at two different time steps, t = 1 (top panel) and t =
5 (bottom panel). For the temporal signal Stp, column (a),
lattice points are displaced equally from the mean position at a
given time step. But each lattice point varies sinusoidally with
time. For the other three signals, the displacement consists of
a sequence of discrete values with a sine profile which (b) is
static in time for the signal Ssp, (c) consists of a fundamental
and its overtones at different time steps for Sst and (d) changes
with time for Stw.

the CML under the influence of these signals, the initial
conditions of the lattice points are chosen as random and
both open and periodic boundary conditions are applied

– open: x(t, 0) = x(t, N + 1) = 0;
– periodic: x(t, 1) = x(t, N + 1) ∀t.

An important criteria for SR is that the signal should be
subthreshold, that is, its amplitude is sufficiently low so
that shuttling between the two basins does not take place
without the help of noise. From our previous analysis [18],
we have found that this can be achieved if the amplitude
of the signal Z is fixed at a value < 0.3 for the signal Stp,
where as for the other three signals this is found to be true
for Z < 0.1.

3 Stochastic resonance with temporal signal

By taking N = 15 and Stp as the input signal, the CML
is iterated for several thousand time steps with random
initial conditions and by tuning the noise amplitude E.
The output signal is obtained from the temporal iterates
of the middle site (i = 8), with a clipping in the win-
dow [−1.5, 1.5]. It is found that the iterates systematically
shuttle between the two basins for an optimum noise am-
plitude as shown in Figure 2. The temporal behavior of all
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Fig. 2. Time variation of the middle site (i = 8) of the CML
in the presence of a subthreshold signal Stp with Z = 0.2 and
noise amplitude E = 2.185, indicating SR in the system. The
value of the coupling strength ε = 0.01.

0 5 10 15

600

800

1000

1200

1400

Fig. 3. The space time plot of the CML with the signal Stp and
optimum noise amplitude.The first 500 iterates are discarded
and the next 1000 iterates are shown for all lattice sites. At
each time step, if the lattice site is in the positive basin, it is
shown in black. The parameter values are Z = 0.2, E = 2.2
and ε = 0.03.

the lattice sites together is shown in Figure 3 in a space
time plot for the optimum noise. It is clear that all the
lattice points move in synchronisation with the temporal
signal between the two basins.

An important signature for SR is a peak in the out-
put signal to noise ratio (SNR) corresponding to an op-
timum noise amplitude. To calculate the SNR, the power
spectrum of the output is first computed using the FFT
algorithm for each value of E. The peak corresponding
to the input signal frequency in the power spectrum is
taken as Sg and the average value of noise corresponding
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Fig. 4. Variation of SNR with noise amplitude for the mid-
dle site (i = 8) of the lattice with the signal Stp (Z = 0.2)
for three values of ε, namely, 0.01 (circle connected by solid
line), 0.03 (squares connected by dotted line) and 0.05 (trian-
gles connected by dashed line). It is clear that the SNR peak is
independent of ε, where as, the optimum noise varies approxi-
mately linearly with ε.

to 10 bins around Sg is taken as noise power Ns. Then the
SNR is calculated using the relation

SNR = 10 log10

Sg

Ns
dB. (7)

The whole procedure is repeated for different values of ε
and the results are shown in Figure 4. A comparison of
these results with that obtained for AESR [14] will be in-
teresting at this stage. For the latter, there is an optimum
coupling strength at which the response of the chain of
oscillators become maximum for a given size of the chain.
But in our case, due to the more complex nature of the
system and the coupling, the range of ε and noise values
for the occurance of SR is found to be limited. For very
small ε, SNR becomes too small and for large ε, the signal
ceases to be subthreshold and tuning the signal and noise
amplitude becomes difficult. For the range of ε where the
response is optimum, the peak SNR is more or less in-
dependent of ε, but the optimum noise amplitude shifts
towards higher values as ε is increased, just as in the case
of AESR. Moreover, the response of the middle site im-
proves, in general, with the lattice size for small and mod-
erate values of N (but saturates for large N), indicating
a co-operative behavior among the lattice points.

4 Lattice stochastic resonance

We now apply the other three signals discussed above
which vary along the lattice and search for SR by tun-
ing various parameters. Two lattice sizes N = 256 and
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Fig. 5. The power spectrum of the values taken from a frozen
pattern along the lattice (of size 512) when a subthreshold
spatial signal Ssp (with frequency p = 1/8 and amplitude
Z = 0.05) is used as input. The frozen pattern is chosen after
discarding initial 10 000 iterations. The peak at the input sig-
nal frequency indicates SR spatially along the lattice. Other
parameters used are E = 0.18 and ε = 0.002.

N = 512 are used in all cases. First, a subthreshold spatial
signal Ssp is used as the input and the system is iterated
using random initial conditions. Note that, here the varia-
tion of noise is not just temporal but also spatial as η(t, i).
That is, at each time step, the noise values are randomly
distributed along the lattice. After discarding the initial
10 000 iterations, we choose a “frozen pattern” of all the
lattice points along the lattice at a given time step as the
output signal. We then find that at an optimum noise am-
plitude, the lattice points are distributed along the lattice
in a rhythmic shuttling pattern in tune with the spatial
signal. The power spectrum for one such frozen pattern is
shown in Figure 5 for a lattice size N = 512. The peak
corresponding to the input signal frequency p = 1/8 is
obvious. We have found that any arbitrary frozen pat-
tern, after sufficient number of iterations, will behave in
an identical manner. In other words, though the lattice
points are changing locally in each time step, globally the
whole lattice tends to an equilibrium distribution in syn-
chronisation with the subthreshold input signal. It indi-
cates the possibility of a noise assisted detection of the
subthreshold spatially varying input signal at the output,
much like the conventional SR for a time varying signal at
each lattice site.

The whole procedure is repeated using the other two
signals as input with similar results. A better way to show
the spatio temporal behavior of the lattice is through the
space time plot which is shown in Figure 6 for all the three
signals for N = 512. Note that in all cases, the pattern
truly follows the type of input signal used. Also the pat-
terns (a) and (c) for Ssp and Stw look similar as expected,
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Fig. 6. Space-time plot showing further evidence of SR along
the lattice in synchronisation with the signal (a)Ssp (b)Sst

and (c)Stw. The noise amplitude is adjusted to be optimum
in each case, coupling strength ε = 0.002 and lattice size is
512. Here the values for 120 iterates for the middle 100 lattice
sites are plotted after discarding initial 10 000 iterations. At
each time step, if the value is in the positive basin, it is shown
in black.

but the latter changes with time as the signal travels along
the lattice, where as, the former tends towards an equilib-
rium distribution or pattern in synchronisation with the
signal.

Finally, the SNR is calculated from the power spec-
trum of the frozen pattern for all the cases for a range
of values of E. In order to avoid any spurious effects, the
calculations are repeated over a number of frozen patterns
and the average value of SNR is determined in each case.
Its variation with E for two lattice sizes 256 and 512 is
shown in Figure 7 for all the signals. Note that due to
the effect of averaging, the SNR does not show any strong
peaks. But the behavior of the trend lines suggest that, in
all cases, there is an optimum noise amplitude (which is
different in each case) at which the response of the CML to
the input signal is maximum. We call this Lattice Stochas-
tic Resonance (LSR) in order to distinguish it from the
conventional SR used to detect subthreshold time vary-
ing signals from the output SNR. Here also the SNR peak
improves with the lattice size, but shows no specific de-
pendence on ε as can be seen from Figure 8.

5 Conclusion

Our major motivation in the present work is to bring out
the versatile nature of CML as a stochastic resonator and
its capacity to handle a variety of signals. We explicitly
show that it supports SR both in the temporal and spa-
tial dynamical setups with an onsite dynamics having the
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Fig. 7. Variation of SNR with noise amplitude showing LSR
for the three input signals (a)Ssp (b)Sst and (c)Stw. Two lattice
sizes, 256 (triangles) and 512 (circles), are used in all cases
and trend line is shown to aid the eye. Average SNR of a large
number of frozen patterns is taken to avoid any spurious effects.
The values of Z and ε are 0.05 and 0.004 respectively in all
cases.
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Fig. 8. Variation of SNR peak with ε for the three cases of
input signals studied in Figure 7 in that order.

minimum required nonlinearity. We use a bimodal cubic
map with an inherent escape scenario and bistability win-
dow as the onsite dynamics and study SR in the CML
using four different types of input signals. We bring out
some novel features involving LSR and its dependence
on various parameters of CML, such as, the lattice size,
and coupling strength. In all the previous studies of SR
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involving spatially extended systems, SNR is measured
only in the temporal output under spatial or spatio tem-
poral synchronisation or pattern formation. But here we
show the possibility of improving the response of a CML
in synchronisation with a small subthreshold signal, static
or moving along the lattice, with the help of background
noise.

This phenomenon may find potential applications in
a variety of practical situations. For example, LSR, if ex-
tended to information carrying digital signals, can be used
beneficially for information coding/decoding in noisy en-
vironments. A similar idea has recently been proposed by
Morfu et al [20] in what they call a Stochastic Resonator
Receiver [SRR] which allows to rescue a subthreshold digi-
tal amplitude modulated information signal using a trans-
lator of the output of a stochastic resonator. Similarly, if
LSR with Ssp can be extended to two dimensions, it may
be effectively used for signal detection or boosting in im-
age processing with the help of background noise. Noise
induced pattern transition and spatio-temporal SR have
been realised in practice [21]. Moreover, LSR with Stw and
Sst can find application with signal transmission in cou-
pled array of communication and neural networks [22].
The LSR can be established further by considering ex-
tra setting like one-way coupling,threshold mechanism etc.
Such studies are being done and will be reported else-
where.

G.A. and K.P.H. thank the hospitality and computing facilities
in IUCAA, Pune.
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